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Abstmch The fusion model of the L-state cyclic solid-on-solid (csos) model is wnsidered 
at criticality. Each ZL-charge sector of the fusion csos model is related to a sum of 
total spin sectors of the fusion vertex model with a seam on which the vertex weighs are 
modified by a phase factor. The latter in turn becomes the higher-spin XXZ quantum 
chain with a twisted boundary condition in the extremely anisotropic limit. Using the 
haun operator content of the higher-spin XXZ chain, we deduce that of the fusion 
csos model. The modular invariant partition function of the fusion csos at fusion level 
k is a sum of prcduds of the Z(k) parafermionic and free boaon secton with the 
effedive coupling g’=L2(l/k - A/=) for L odd and g”=L2(l /k  - A/ i r ) /4  for L 
even, where X is the crossing parameter. When L is odd and a multiple of k, or when 
L / 2  is a multiple of k for L even, the modular inwriant partition function becomes a 
simple produd of the Z(k) parafermionic and the Gaussian partition function. 

1. Introduction 

The L-state cyclic solid-on-solid (csos) model [1,2] is a class of integrable lattice 
models where the spins or heights on each lattice site can take the integer values 
0,1,. . . , L - 1 (L 2 3), with the height L being identified with 0. The heights 
of adjacent sites are restricted to differ by f l  mod L .  Due to this restriction, 
each allowed configuration of the csos model can be mapped to a unique six-vertex 
arrow configuration but not vice versa. The allowed face configurations and their 
corresponding assignment of six-vertex arrow configurations are shown in figure 1. 
The model is parametrized by L and the crossing parameter A, which can take a set 
of discrete values X = ~ r s / L ,  with s = 1,2, .  . . ~ L - 1 co-prime to L and is solvable 
in a three-dimensional manifold. 

At the critical point, non-vanishing face weights of the csos model reduce to 
those of the corresponding six-vertex model. They are 

W l , l ( a , a + l , a , a - l I u ) =  W l , l ( a , a - l , a , a + l I u ) = S _ l  
Wl , l ( a+ l , a , a - l , a lu )  = W * , l ( a - l , a , a +  I ,a lu)=so  (1) 
W,,,(a -I- 1, a,  a + 1, alu)  = W,,,(a - 1, a, a - 1, alu) = 1 

where W1,]( a, b. c,  dlu) is the weight for a face with corner heights {a ,  b, c,  d }  going 
counterclockwise starting from the lower left corner, and 

sin( u + n A) 
Sin( A)  (2) 8 = -  

n -  
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Figure 1. Non-vanishing face weights of the csos model and assignments of vertex 
configurations. At criticality, weights of the csos model become the same as the 
colresponding vertex weights of the six-vertex model. 

The subscript (1,l) stands for the fusion level to be discussed below. We use 
the particular gauge in which the third and fourth weights of (1) are negative for 
0 < U < A. Here, U is the spectral parameter controlling the spatial anisotropy of 
the interactions. With this parametrization, the Yang-Baxter equation is satisfied for 
any X and it is not necessary to restrict it to a set of discrete values any more; we 
take it to be a real number in the range 0 < X < r. In [3], the operator content of 
the csos model on torus with general toroidal bounday conditions is derived using 
its relations to the six-vertex model and the known operator content of the latter. In 
particular, the modular invariant partition function (MIPF) for even numbers of rows 
and columns is found to be exactly the Coulombic (or Gaussian) partition function 
whose coupling constant g‘ (9”) for L odd (even) (see for example [4-61, is related 
to the csos model parameters by? 

g’ = LZ(1- X / T )  

g”= L 2 ( 1 - X / n ) / 4  

if L is odd 
if L is even. 

The k-fusion is a procedure in which k x It blocks of vertices or faces are put 
together and partially traced to obtain new integrable weights [7-91. The 2-fusion 
of the siu-vertex model for example leads, after a gauge transformation, to the 19- 
vertex model [4,10]. The vertex model obtained by 12-fusion of the six-vertex model 
will be called the k-fusion vertex model. Its MWF is derived in 141 and is a sum of 
tensor products of the Z(k) paraferm’onic and free bosonic sectors (see below). In 
the extremely anisotropic limit U - 0, the model reduces to the higher-spin X X  Z 
quantum chain 111,121; that is, the logarithmic derivative at U = 0 of the row transfer 
matrix of It-fusion vertex model is the spin-k/2 X X Z  quantum chain Hamiltonian. 
The associated central charge is 

c = 3 k / ( k + 2 ) .  (3) 
t We take this opportunity to correct an error in [3]. The term t r imlN should be added to the 
right-hand side of equation (26) of [3]. This gives the crucial sign term (-l)m in the modular -variant 
partition fundion for a lattice with an odd number of rows. We thank to J-Y Choi for pointing out the 
missing term. 
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Fusion of the RSOS model [8,9] leads to the class of models whose criticality in the 
continuum limit is described by conformal field theory associated with the coset 
construction based on SU(2) [13]. Recently, fusion of the csos model has been 
studied in [I41 and [E]. 

In this work, we consider the critical fusion csos model obtained by the k-fusion 
procedure of the critical csos model. In particular, we focus on the operator content 
and derive its MIPF. Since the critical csos weights can be mapped to those of the 
integrable six-vertex model, properties of the critical k-fusion csos model can be 
inferred from those of the R-fusion vertex model as discussed below. The essential 
ingredient in this approach is the full operator content of the k-fusion vertex model 
with a twisted boundary condition. Its exact form has been conjectured by Alcaraz 
and Martins [16] from numerical results of XXZ quantum chain for R = 2 and 3. 
(The leading term, i.e. the central charge for k = 2 is calculated analytically in [lo].) 
We combine this and the result of [4] to derive the MIPF for the k-fusion csos model. 

2. Row-transfer matrix structure 

In this section, we discuss the relation between the row-transfer matrix (RTM) of the 
critical fusion csos model and that of the fusion vertex model. First we consider 
the RTM of the L-state critical csos model whose face weights are given in (1) [3]. 
We put the system on the square lattice with N columns and Ad rows and impose 
the periodic boundary conditions in both directions. For simplicity, we confine our 
discussions to the case where N and M are both even. We discuss briefly the cases 
of other shift boundaly conditions and odd parities of N and M in the last section. 
A height configuration of a row a = { a l ,  a2,.  . . , a N }  is allowed or admissible if 
each pair (a i ,  ai+l )  satisfies the adjacency condition. An admissible configuration 
can then be represented by ( a l ,  U )  where U = {ul,. . . ,uN} and 

ui = - a j  mod L .  (4) 

With the association of U; = 1 (-1) to the up (down) arrow on the corresponding 
vertical bond of the dual lattice, U stands for an arrow configuration of a row of 
vertical bonds. The 'total spin' defined by 

is a conserved quantity from row to row because of the local arrow conservations and 
one can consider each Q sector separately. Q takes integer values between - N / 2  
and N / 2  but the periodic boundary condition for the L-state csos model further 
restricts possible values of 2Q to 0 mod L. Thus Q takes the values of the set 

for L odd 

( L / 2 ) Z  for L even 
R, 

with implicit understanding of IQ1 < N / 2  before the thermodynamic limit. 
Let V$,') (p  = i l ,  Q = 0, fl,. . . , i N / 2 )  be the six-vertex RTM in the sector 

Q with the'?irst horizontal arrow fiied to left (right) when p = 1 (-1). This can be 
written graphically as 
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If('") with arguments stands for its matrix element. with Cui = Xu: = 2Q. 
The superscript (1 , l )  is added to distinguish various fusion levels and U and X 
dependences are implicit. The standard RTM Tl of the six-vertex model [17] then can 
be written as 

P!Q 

where @ denotes direct sum and the sum is over Q = 0, & I , .  . . , ;t.N/2. The 
logarithmic derivative of T1 at U = 0 gives the spin-; XXZ chain Hamiltonian. The 
twisted boundary condition on the X X Z  chain is obtained by choosing 

s$+, = (8) 

where Sh is the spin raisinglowering operator for spin S = !j, and q5 is the twist 
angIe. It has been of considerable interest since the operator content of other c < 1 
theories can be generated by appropriate choice of sectors and the value of q5 [18]. 
In the vertex-model language, it is equivalent to the six-vertex model with a seam in 
which the vertex weights are modified by a phase factor exp(ipq5/2) with p = fl 
depending on the horizontal arrow direction of the seam (31. Its RTM T', takes the 
form 

The m V, of the L-state csos model with the states labelled as (a l ,u) ,  etc, 
takes the tridiagonal block structure 
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we can block-diagonalize V, into the ‘Z,-charge’ sectors with the Z,-charge P taking 
the values of the set 

s, = { O , l , . .  . , L - l}. (12) 

(13) 

Therefore we have 

V, =, @ @ ( e x p ( 2 r i ~ / ~ ) ~ $ j ) +  e x p ( - 2 r i ~ / ~ ) v ( Y A }  . 
PESL QERr. 

Now we introduce the k-fusion models of the csos model. Define, as in [9], 

w ; , k ( %  b, C, Q?J) 

= c n ~l,1(~i,~,aitl,3,~itl,j+l,ai,jtllZL+ ( i f j f  1 - k ) X )  
O<i,j<k-l 

(14) 

with q0 = a, ak = b, ak,k = c, = d, where the sum is taken over all allowed 
configurations of {aci}, keeping fixed the corner heights a, b, c, d, and the righvtop 
boundary heights. Ths is pictorially shown for k = 3 in figure 2. 

When the fusion level k satisfies the condition 

k < L - 1 
k < L/2 - 1 

for L odd 
for L even 

one can show, in the manner of [9 ] ,  that the resulting sum in (14) is independent 
of the remaining boundary heights (open circles in figure 2) and is factorized by the 
factor fof-l.. . f-ktl where 

f a  = sasa+l . . . Sa+k-2. (16) 
The face weights of the k-fusion csos model at criticality are then 

U b 

Figure 2. Graphical representation of the (3 x 3)-fusion. The heights on sites with full 
circles are summed over while those on the right and top boundary heights as well as 
that on the bottom left corner are kept constant. 
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An allowed row configuration {a , ,  a2,.  . . , a N )  can then be represented by (a , ,  U )  

as before but now each 0; takes the values 

0 .  , = a .  ,+, - ai (18) mod L = k, k - 2,. . . , - k  . 
Equation (17) also defines the vertex weights of the k-fusion vertex model where the 
four bond states are { b  - a, e - b, c - d,  d - a}  anticlockwise starting from the 
lower vertical one. 

Similarly to the k = 1 case, we define V$$' with k 2 1, p = k, k - 2 , .  . . , -k 
and Q = 0, fl,. . . , i k N / 2 ,  as the k-fusion vertex model RTM in the total spin 
sector Q with the first horizontal bond state fixed to p.  In the fusion vertex model 
with a seam, the vertex weights along the seam pick up the phase factor exp(ipq5/2), 
with p now denoting the horizontal bond state (p  = IC, k - 2,.  . . , - IC).  Then the 
RRVI 2': of the k-fusion model with the seam on the fist  column is given as 

Q P  

In the higher-spin X X Z  chain limit, the effect of the seam translates into the twisted 
boundary condition (8) with S = k/2. 

As to the L-state k-fusion csos model, the RTM V, maintains the cyclic L x L 
block structure as in (10). After block-diagonalizing into the Z,-charge sectors, one 
can write it as 

Comparing (19) with (ZO), one sees that the operator content of the latter can be 
inferred from that of the former. When k is out of the range (15), one cannot 
define local face weights for csos model due to the winding configurations [15]. 
However one can still define the fusion models by that whose RTM is given by (20) 
for arbitrary k. 

3. Operator content of the fusion csos model 

Conformal invariance of a critical statistical system implies that its partition function 
on a torus is determined, apart from the non-universal bulk contribution, by 
its underlying conformal field theory and is a universal function of the modular 
parameter r in the continuum limit. We are interested in this MIPF of the fusion 
csos model in this section. For the six-vertex model on an N x hI  lattice, T is related 
to the spectral parameter by [19] 

This relation should also be valid for fusion vertex models. 
Di Francesco er al [4] have argued that the MIPF of the fusion vertex model is 

a sum of tensor products of free bosonic and Z(k)-parafermionic sectors. Some of 
their results were checked numerically. It was later confirmed by Alcaraz and Martins 
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[20] in a more extensive numerical work on the Bethe ansatz equation for the X X Z  
chain version. We recall that the Coulombic or Gaussian partition function with the 
coupling constant g is given by [4] 

where 

T = 7' + iT", q = exp(2?ii+) and q( q )  is the Dedekind function 
m 

q = q ' / 2 4 n ( l - q n ) .  (24) 
*=I 

After the Poisson transformation, it takes the form 

where 6 is the complex conjugate of q and the conformal dimensions (Am,n(g), 
&n(g)) in the free bosonic sectors (m, n)  are given by 

The Z(k)-parafermionic field theory is first studied in [21]. In this model, one 
can impose twisted boundary conditions exp(2xir/k) and exp(2ris/k) on the spin 
variables along the space and time directions, respectively. The respective toroidal 
partition functions Z k ( v ,  s) are derived in 1221. We define &(r, s) as the partial 
trace over the Z,--charge sector s with the spatial boundary condition exp(2?iir/k). 
2, is related to 2, by 

and 2, in turn is related to the string function c k  (see equation (3.33) of [22]) via 

k 
Z,(r,s) = l n I 2 ~ c S t , E f - ,  . 

L=O 

A useful representation of c& is given by 1231 
m 



58 DKim 

when t - m E 2 2  and c,$ = 0 otherwise. When k = 2 and 3, c,$ is the sum of 
Virasoro characters for c = $ and 2 minimal theory, respectively. For general IC, its 
leading term is c,$ - q-cl"th~ where c = 3 k / ( k  + 2) and 

for Jntl 6 t. For other values of m, the symmetries 

(32) c l - ;  - - c k - L  
m - c-, - ' L t Z k -  k-m 

can be used to put m in the indicated range. Since the right-hand side of (29) is 
periodic in P and s with period k. i k ( r , s )  and Zk(v,s) can be considered to be 
defied for all P, s E Z with the same periodicity. 

Using these notations, the result of (41 for the MIPF of the fusion vertex model 
(equation (4.7) of [4]) is given by 

where the coupling constant g which enters through the definitions of conformal 
dimensions (A, A) is related to the crossing parameter by 

g = I l k -  X / n .  (34) 

The two expressions are related by the Poisson transformation. This result is valid 
for 

a < x < nF/k (35) 

and we restrict the range of X accordingly. The summation index n in (33) is 
identified with the total spin quantum number Q by Alcaraz and Martins [ZO]. They 
also studied in [16] the operator content of higher-spin X X Z  chain with the twisted 
boundary condition (8). It was found that the effect of the twisted boundary condition 
enters through the shift in the subscript of (A, A) in (33): 

The partition function in the total spin sector Q of the fusion vertex model with seam 
is defined by 

where M is the number of row in the lattice and tr is the trace over ( k  + l ) N  bond 
states of a row with N columns. Results of [4] and [16] implies that 
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where here and below we omit the bulk free energy contribution from the partition 
function. Combining these results with discussions of the previous section, we deduce 
that the MIPF of the Ic-fusion csos denoted by Zk-,, is given by 

This is our principal result. From this one can read off the operator content for 
each of P and Q sectors of the fusion csos model. For example, the conformal 
dimensions of the operators in the P, Q sector are 

where T = Q mod k, s = m mod le, m E 2 and 0 < e < Ic with I2 + T 4- s even. 
Am,%. Am+ and hh are given by (26), (27) and (31), respectively. The central 
charge and the composite character of the operators are the same as in the fusion 
vertex model. 

4. Discussions 

Equation (40) can be brought into more transparent form by summing over P. Let 
us f i t  consider the L-odd case. When L is odd, Q = n L  with n E Z. Define A& 
and A',,, by 

These are the Gaussian conformal dimensions in the sector (m,n) with the scaled 
coupling constant 

g'= L z g =  L 2 ( l f k - A f n ) .  (43) 

Equation (40) can now be written as 

Changing the summation index m to m'k + s (m' E Z, s = 0, . . . , k - I) and using 
the fact that the set 

{ m ' L  + 2Plm' E 2, P E S L }  (45) 

is equal to Z for L odd, we can write Zk-,os as 
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This expression simplifies drastically when L/k is an integer. 
equation (46) becomes 

In this case, 

(L odd, L=O mod 12) (47) 
where we have used (28) and (25). That is, the model becomes the simple direct 
product of the Z(k)-parafermionic model and the Gaussian model. When L / k  
is not an integer, such simple factorization does not occur. However, a Poisson 
transformation on (46) leads to a simpler form where the modular invariance is 
explicitly manifested: 

z,-,s = Z,,,(g')Zk(nL,mL) (L odd). (48) 
n,m€Z 

When L is even, one is led to define A;,n and A;,+ by 

A%>n = AZmjL,nL./Z (49) 

A:,,% = & , , / L , n L / 2 .  (50) 

g"= (L/2)2g= LZ(l/!%--A/Tr)/4. (51) 

These are the Gaussian conformal dimensions in the sector ( m ,  n) with the scaled 
coupling constant 

Proceeding as before one obtains 

= 2  ~ , , , ( g " ) z , ( n ~ / 2 , m ~ / 2 )  (L even). (52) 
l&,naEZ 

The front factor 2 in (52) arises since the set (45) covers even integers twice for L 
even. Apart from it, the MIPF for L even is exactly the same as that for L odd as long 
as we use the effective number of heights L' = L / 2  instead of L in the expression of 
the latter. (The origin of this reduction in the effective number of heights is discussed 
in [3].) In particular when L/2 is divided by k, one has 

(L even, L/2 = 0 mod k). (53) 

We have considered in detail the cases where N and A4 are both even and the 
boundary conditions are periodic in both directions. We give brief discussions for 
other cases. For the shifted boundary conditions (e, 1') 131, the set RL in (6) has to 
be generalized to 

Zk-,, = 2Z,-,(g") Zk(O,O)  

LZ + c / 2  for L odd and & + 12N even 

L Z + ( e + L ) / 2  f o r L o d d a n d & + k N o d d  (54) 
(L/2)Z t &/2 for L even and C + kN even, 
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and each Z,-charge P sector contributes to the partition function with a phase factor 
exp(2aiPP/L). When N and M are not both even, let 

p = N m o d 2  and u = M m o d 2 .  (55) 

For arbitrary p, v = 0, 1, (33) is modified as [4] 

z ; m  = Z n + k p / 2 , m ' + k v / Z ( S )  %(n, mo 
%"EZ 

Note that this result of [4] is different from that of [20]. We have checked numerically 
for N < 9 and k = 2 that (56) is correct and that the values of n + k p / 2  in (56) 
correspond to the total spin Q. Accordingly, we conjecture that (39) takes the 
generalized form 

and the modular covariant partition function of the k-fusion csos is given by 

e x p ( 2 n i ~ P / ~ )  z t " (4  = ~ T P / L ) .  (58) P A W  - zk-csos - 
P E S L  QER', 

In summary, the operator content of the fusion csos is obtained for general L, 
the number of heights, and 12, the fusion level. The operator content of each 2,- 
charge P and total spin Q sectors is related to that of a corresponding sector of the 
fusion vertex model with twisted boundary conditions. The MIPF which is obtained by 
summing over all the sectors is expressed as a tensor product of Z(12)-parafermionic 
and free bosonic sectors. When L is odd and a multiple of k, the MIPF factorizes 
into the parafermionic and the Gaussian partition function with the effective coupling 
constant given by (43). When L is even, the effective number of heights is reduced 
to L/2. 
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